
Prolog
Programming in Logic

Paper 7 Computer Science

Part 1B and Part II 50%

Ian Lewis, Andrew Rice

Agenda for this lecture
1) Aims & Objectives for the course
2) What’s the point?
3) View Video #1 - “Prolog Basics”
4) Recap: Programming style, program structure, terms, unification
5) Course outline
6) Success vs. Failure in Prolog - life lessons

Aims

1. Introduce programming in the Prolog Language
2. A different programming style
3. Solve ‘real’ problems
4. Practical experimentation encouraged

Objectives
1. Understand the powerful capabilities of ‘pure’ Prolog: term structure, facts,

rules and queries, unification.
2. Know how to model the backtracking behaviour of Prolog program execution,

and recognize it as depth first, left-to-right search.
3. Appreciate the unique perspective Prolog gives to problem solving and

algorithm design.
4. Understand how larger programs can be created using the basic

programming techniques used in this course.

Why study Prolog?

Why study Prolog?
● In an imperative science, know and cherish the declarative approach

If you have a fact: taller(andy, ian). you are DECLARING, or ASSERTING, a

relationship “taller” to hold between atoms “andy” and “ian”.

You can declare taller as an infix operator: op(500, xfx, taller).

Hence: andy taller ian.

?- andy taller X.

X = ian

Why study Prolog?

len([],0).
len([X|T],N) :- len(T,M),
 N is N + 1.

Why study Prolog?

fun fact(1) = 1;
 fact(N) = N * fact(N-1).

fun fact(N) = if (N = 1)
 then 1
 else N * fact(N-1).

fun append([],Y) = Y;
 append([X|Xs],Y) = [X|append(Xs,Y)].

These are all valid Prolog terms.

“Everything is a relation” (mostly,
with a few hairy edges, like
arithmetic)

You can write programs about
programs.

Why study Prolog? You will learn Prolog backtracking can
be interpreted as a “search tree”.

Actually, given that a Prolog program is
itself a valid Prolog term, you can apply
simple transformations to that program
to manipulate the tree. E.g.

last([X], X).
last([_|T],X) :- last(T,X).

Goes to:
last([X], X, [1]).
last([_|T],X,[2|P]) :- last(T,X,P).

?- last([a,b,c,d],X,P).
X= d
P = [2,2,2,1]

Why study Prolog?

Don’t worry about ANY of that.
Just recognize Prolog is all about DECLARING / ASSERTING RELATIONS.

“Everything” in Prolog is a ‘meaningless’ relation (with a few practical exceptions
which are certain to torture you at some point).

Prolog programs are facts and rules, with backtracking providing a powerful
search facility.

Unification on its own is an immensely powerful paradigm.

The combination of these ‘simple’ things can produce very complex behaviour.

Clauses + Unification + Backtracking = Programs.

Video #1: Prolog Basics

Programming Style
IMPERATIVE

l = [1,2,3,4,5];

sum = 0;

for (i=0; i<length(L); i++) {

sum += 1;

}

return sum;

DECLARATIVE

fun sum([]) = 0

 | sum(x::xs) = x + sum(xs);

sum([],0).

sum([X|L],S) :- sum(L,N), S is N+X.

Program Structure
Terms = atoms, variables, compound terms (can be infix)

Clauses = Facts + Rules.

Rules = Head :- Body.

Comments = % <anything>

?- = query prompt (often with side effects).

?- [<filename omitting .pl>]. = “consult” a file.

?- [user]. = “consult” user input (uses Prolog “assert”)

Terms
?- X = foo.

X = foo.

?- X = 1.

?- X = a.

?- X = 1.2.

?- X = a(1,a,Y,2).

?- X is 1+2

X = 3. (actually “?- is(X,+(1,2))”)

Compound term:

functor/arity

E.g.

foo(a,b(1),c) -> foo/3

Unification
Unification does not have a “direction”...

Atoms <-> Atoms (and constants)

Variable <-> Anything

Compound Term <-> (same functor/arity) & (arguments unify)

Occurs check e.g. X = a(X).

Unification
a

1.2345

foo

a(b,C)

a(b,c)

a

1.2345

X

a(X,p(q))

X(b,c)

yes

yes

X=foo

X=b,C=p(q)

Term 1 Term 2 Result after unification

:- X = a(Y), Y = 7.
X = a(7),
Y = 7.

Backtracking
:- [user].
a(1).
a(3).
a(7).
a(9).
^D
:- X = a(Y), Y = 7.
X = a(7),
Y = 7

Prolog backtracking is depth-first, left-to-right

Life Lessons #1

Think DECLARATIVE.

len([],0). is asserting that “[]” and “0”
are associated via the “len” relation.

Queries

:- len([],X).

:- len(X,0).

are equally reasonable.

Life Lessons #2
Think DEPTH-FIRST LEFT-TO-RIGHT

:- [user].
a(1).
a(3).
a(7).
a(9).
^D
:- X = a(Y), Y = 7.
X = a(7),
Y = 7

Your program might never end...

Life Lessons #2
Think DEPTH-FIRST LEFT-TO-RIGHT

:- [user].
len([],0).
len([_|T],N) :- len(T,M), N is M+1.
^D
:- len([a,b,c,d],N).
N = 4.
:- len(L,0).

Your program might never end...

Life Lessons #3
Don’t inject FUNCTIONAL support that
doesn’t exist in Prolog

foo(L) :- ... X = max(L) ...

Life Lessons #4
Comment each relation:

% len(L,N) succeeds if L is a list and N is the length of that list.
len([],0)
. . .

If your relation has ‘input’ and ‘output’ arguments, say so in your comment AND
put the input variables to the left of the output variables in the head of the clause.

Use variable names H and T (or L) for head and tail of a list (or H1, T1). Do not
assume all variables have to be a single letter...

Adhere to variable naming and ordering conventions:

Summary:

Think DECLARATIVE.

Think DEPTH-FIRST LEFT-TO-RIGHT.

Comment each relation.

Adhere to variable naming and ordering conventions.

GOOD LUCK

